
Writing A Scanner

A Scanner should create a token stream from the source code.
Here are 4 ways to do this:

A. Hack something together till it works. (Blech!)
B. Use the language specs to produce a Deterministic

Finite Automaton (DFA) that identifies tokens, then
write a program that models this DFA.

C. Write table-driven Scannner (more on this later).
D. Use LEX (a standard Unix program that generates a

Scanner.

It is not hard to guess which approach we'll take. We first need
to do a little background work.

A regular expression is an expression made from the following
rules. We start with an alphabet S.
 a) If letter a is in S, then a is a regular expression.
 b) If s and t are regular expressions, so are st, and s|t.
 c) If s is a regular expression, so are (s), s+ and s*.

Regular expressions are patterns that describe strings:

a) Any letter of the alphabet describes itself.
b) st describes the strings that can be made from something

described by s, followed by (concatenated with)
something described by t. s|t describes anything that is
described by either s or t.

c) (s) describes the same strings as s. s+ describes all the
strings that can be made by concatenating together one
or more strings described by s. s* is the same, only
concatenating 0 or more strings described by s.

For example, let dig represent the decimal digits and pos the non-
zero digits:
 pos ::= 1|2|...|9
 dig ::= 0|pos
Then we could represent the positive integers as

 PosInt ::= pos dig*

We could represent the nonnegative integers as

 NonNeg ::= 0 | pos dig*

We could represent all integers with
 Int ::= 0 | pos dig* | - pos dig*

If we let Letter be the alphabet of letters a-z, then
 letter* bob letter*
is the set of strings that contain "bob" as a substring.

Here is a regular expression describing the strings of 0's and
1's that contain an even number of 1's:

 0*(10*10*)*0*

In language theory a language is any set of strings. We say a
language is regular if it is described by some regular
expression.

Here is why we care: in almost all programming languages, the
set of tokens forms a regular language.

Sadly, programming languages almost never specify the
regular expressions that describe their tokens.

Fortunately, there is another way to describe regular languages,
and it leads directly to programs.

A deterministic finite automaton or DFA consists of a set of states
and transitions between those states. Some people call this a
"finite state" automaton. Rather than give a formal definition,
here is a picture of one:

The states are represented by circles, the transitions by
labeled edges. One state is labeled "Start". One or more
states are represented by double circles; these are the
"terminal" states.

We say this automaton "accepts" or "rejects" a string according
to the following rules. We begin in the Start state at the start of
the string. We move through the transitions of the automaton
using the letters of the string to determine which transition to
take. If we get to a state where there is no transition out
corresponding to the next letter, we reject the string. At the
end of the string, we look to see what state we are in. If it is a
terminal (double circle) state we accept the string; it it is not a
terminal state we reject the string.

For example, consider our automaton with the string 10010. We
begin in the Start state. With the first 1 we go to state B. On the
next two 0's we stay in state B. On the 1 we go to state A; on the
final 0 we stay in state A. We are at the end of the string in a
terminal state, so this automaton accepts string 10010.

It is easy to turn such an automaton into code. Here is a Java
function that takes a string and returns true or false according to
whether this automaton accepts or rejects the string. For
simplicity I have numbered the states: Start is state 0, A is state
1, and B is state 2:

public static boolean Accept(String s){
 int state = 0;
 for (int i =0; i < s.length(); i++) {
 char ch = s.charAt(i);
 if (state == 0) {
 if (ch == '0')
 state = 1;
 else
 state = 2;
 }
 else if (state == 1) {
 if (ch == '1')
 state = 2;
 }
 else if (state == 2) {
 if (ch == '1')
 state = 1;
 }
 }
 if (state == 2)
 return false;
 else
 return true;
}

In the Theory course (CSCI 383) we show that a language is
regular if and only if it is the language accepted by some DFA.

The tokens of most programming languages form regular
languages. It is usually an easy matter to draw out a DFA that
accepts these tokens and then convert that DFA to code. In
principle, that is your Scanner.

For example, suppose our language has 4 kinds of tokens:
Identifiers, non-negative Number, + and *. Here are some
definitions:

alpha ::= a|b|...|z
digit ::= 0|1|2|...|9
Id ::= alpha (alpha | digit)

Int ::= digit+ (let's not worry about leading 0's)

Plus ::= +
Times ::= *

Here is the DFA for this:

It is easy enough to turn this DFA into code.

There is an issue here that is inherent to thinking of scanners as
DFA's. We scan through the entire program; no one is giving us
individual strings and asking if these strings are tokens. One of
the tasks of our scanner is to find the boundaries where one
token ends and another one starts.

Think of the expression 23*4. If we are scanning through the
start of this we see the digit 2, and know we are looking at a
number. We see the digit 3 and we are still looking at a number.
We see the *character and we know we are done with the
number and have found a token, representing 23. However, we
have already read the start of the next token!

We will generally consider a token to be the longest string that
will result in a valid token. So "23skidoo" results in two tokens:
the Num "23" and the Id "skidoo".

We still need to deal with the fact that we don't recognize
that most tokens are finished until we have read the first
character of the next token.

The solution to this problem is to keep a lookahead character
-- the next character that has not yet been used.

This can be handled in various ways. In C, where there is an
ungetc() function that sticks the most recently read character back
on the input buffer, it is easy to use the input buffer for the
lookahead; when you realize you have read past the end of the
current token just unget the extra character.

Java, and many other languages, don't have an unget operation. I
find that the easiest way to handle this issue in such languages is
to read the source code one line at a time and keep an index to
the current location on this line. When you use the current
character from the line, increment this index. TO "unget" a
character just don't increment the index. The end of the line
terminates any token. When you are at the end of the line and
need the next character, read the next line from the file and set
the character index to 0.

We will structure our Scanner to have a getNextToken() method.
This method reads through the source file until it has found the
next token, which it assigns to a Token variable.

The next two slides have such a function for the Token language
consisting of Nums, Ids, and + (with room for 4 more lines we
could add a case for * as well).

public void getNextToken() throws ScannerException {
 int i = 0; // i points at the next character to handle
 int j=0;
 while (i < currentLine.length() &IsWhitespace(currentLine.charAt(i)))
 i += 1;
 if (i == currentLine.length()) {
 if (input.hasNextLine()) {
 currentLine = input.nextLine();
 lineNumber += 1;
 getNextToken();
 }
 else {
 nextToken = new Token(Token.T_EOF, "", lineNumber);
 currentLine = "";
 }
 }

else { // i < currentLine.length()
 char ch = currentLine.charAt(i);
 if (isDigit(ch)) {
 j = i+1;
 while (j < currentLine.length() && isDigit(currentLine.charAt(j)))
 j += 1;
 String tokenString = currentLine.substring(i, j);
 nextToken = new NumberToken(Token.T_NUM, tokenString, lineNumber);
 currentLine = currentLine.substring(j);
 }
 else if (isLetter(ch)) {
 j = i+1;
 while (j < currentLine.length() && isAlphaNum(currentLine.charAt(j)))
 j += 1;
 String tokenString = currentLine.substring(i, j); if e
 nextToken = new Token(Token.T_ID, tokenString, lineNumber);
 currentLine = currentLine.substring(j);
 }
 else if (ch == '+') {
 nextToken = new Token(Token.T_PLUS, "+". lineNumber);
 currentLine = currentLine.substring(i+1);
 }
}

Most languages, including BPL, have some tokens that are
keywords, such as "if", "while", "void", etc. You could make a
complicated DFA that recognizes these, but an easier way to
handle them is to make them part of the code that finds
Identifiers. Before you decide that a string represents an Id
token, run it through a filter that searches for each for each of
the keywords. If you find that your token string is "if", for
example, you want to make it a IF-token rather than and ID-
token.

